
The growing prevalence of embedded systems in various applications has raised concerns about their vulnerability to malicious code reuse attacks. Current software-based and hardware-assisted security techniques struggle to detect or block these attacks with minor performance and implementation overhead. To address this issue, this paper presents a lightweight hardware-assisted scheme to enhance the security of embedded systems against code reuse attacks. We develop an on-chip lightweight hardware shadow stack to validate target addresses at runtime for backward-edge control flow integrity, which backs up valid return addresses during function calls and automatically verifies actual return addresses during the return phase. Additionally, we propose a lightweight stream cipher circuit that encrypts and decrypts critical stack data related to control flow manipulation, preventing attackers from analyzing or tampering with them. When designing and implementing the security mechanism for embedded systems, we fully consider the constraints of limited system resources and performance, optimizing both the architecture design and implementation of the proposed hardware. Finally, we integrate both the proposed lightweight hardware shadow stack and the runtime data encryption hardware into the OR1200 processor. We have verified the system security function on the Terasic DE1-SoC FPGA platform and evaluated the system performance as well as implementation overhead. The results show that the proposed lightweight hardware-assisted scheme can provide a dedicated defense capability against code reuse attacks for embedded systems, with an average system performance overhead of 0.39% and an area footprint of 0.316 mm2.
embedded system, embedded system; code reuse attack; control flow integrity; hardware-assisted lightweight scheme, code reuse attack, TJ1-1570, hardware-assisted lightweight scheme, Mechanical engineering and machinery, control flow integrity, Article
embedded system, embedded system; code reuse attack; control flow integrity; hardware-assisted lightweight scheme, code reuse attack, TJ1-1570, hardware-assisted lightweight scheme, Mechanical engineering and machinery, control flow integrity, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
