Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1992 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus.

Authors: N, Amlaiky; S, Ramboz; U, Boschert; J L, Plassat; R, Hen;

Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus.

Abstract

Using a strategy based on amino acid sequence homology between 5-hydroxytryptamine (5-HT) receptors that interact with G proteins, we have isolated from a mouse brain library a cDNA encoding a new serotonin receptor, the 5HT1E beta receptor. Amino acid sequence comparisons revealed that its closest relatives were the recently characterized 5HT1E receptor (S31) and the 5HT1B and 5HT1D receptors. When expressed transiently in Cos-7 cells, the 5HT1E beta receptor displayed a high affinity for the nonspecific serotonergic radioligand 2-[125I]iodolysergic acid diethylamide (Kd = 980 pM). The pharmacological profile of the 5HT1E beta receptor resembled that of previously reported 5HT1E sites that have a low affinity for 5-carboxamidotryptamine and that have been found in human and rat brain. When stably expressed in NIH-3T3 cells, the 5HT1E beta receptor was negatively coupled to adenylate cyclase. In situ hybridization experiments revealed that the 5HT1E beta transcripts were detected only in the CA1, CA2, and CA3 layers of the hippocampus. Our results therefore demonstrate that the 5HT1E receptors constitute a heterogeneous family of receptors.

Keywords

Base Sequence, Transcription, Genetic, Molecular Sequence Data, 3T3 Cells, DNA, Hippocampus, Polymerase Chain Reaction, Mice, Radioligand Assay, GTP-Binding Proteins, Receptors, Serotonin, Cyclic AMP, Animals, Amino Acid Sequence, Cells, Cultured, In Situ Hybridization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 1%
Top 1%
gold