
Pulmonary arterial hypertension (PAH) is a progressive disease that, if left untreated, eventually leads to right heart failure and death. Elevated pulmonary arterial pressure (PAP) in patients with PAH is mainly caused by an increase in pulmonary vascular resistance (PVR). Sustained vasoconstriction and excessive pulmonary vascular remodeling are two major causes for elevated PVR in patients with PAH. Excessive pulmonary vascular remodeling is mediated by increased proliferation of pulmonary arterial smooth muscle cells (PASMC) due to PASMC dedifferentiation from a contractile or quiescent phenotype to a proliferative or synthetic phenotype. Increased cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC is a key stimulus for cell proliferation and this phenotypic transition. Voltage-dependent Ca2+ entry (VDCE) and store-operated Ca2+ entry (SOCE) are important mechanisms for controlling [Ca2+]cyt. Stromal interacting molecule proteins (e.g., STIM2) and Orai2 both contribute to SOCE and we have previously shown that STIM2 and Orai2, specifically, are upregulated in PASMC from patients with idiopathic PAH and from animals with experimental pulmonary hypertension in comparison to normal controls. In this study, we show that STIM2 and Orai2 are upregulated in proliferating PASMC compared with contractile phenotype of PASMC. Additionally, a switch in Ca2+ regulation is observed in correlation with a phenotypic transition from contractile PASMC to proliferative PASMC. PASMC in a contractile phenotype or state have increased VDCE, while in the proliferative phenotype or state PASMC have increased SOCE. The data from this study indicate that upregulation of STIM2 and Orai2 is involved in the phenotypic transition of PASMC from a contractile state to a proliferative state; the enhanced SOCE due to upregulation of STIM2 and Orai2 plays an important role in PASMC proliferation.
Male, Calcium Channels, L-Type, Nifedipine, Hypertension, Pulmonary, Myocytes, Smooth Muscle, ORAI2 Protein, Pulmonary Artery, Muscle, Smooth, Vascular, Mice, Animals, Calcium Signaling, Cells, Cultured, Cell Proliferation, Membrane Glycoproteins, Cell Dedifferentiation, Calcium Channel Blockers, Mice, Inbred C57BL, Calcium, Calcium Channels, Muscle Contraction
Male, Calcium Channels, L-Type, Nifedipine, Hypertension, Pulmonary, Myocytes, Smooth Muscle, ORAI2 Protein, Pulmonary Artery, Muscle, Smooth, Vascular, Mice, Animals, Calcium Signaling, Cells, Cultured, Cell Proliferation, Membrane Glycoproteins, Cell Dedifferentiation, Calcium Channel Blockers, Mice, Inbred C57BL, Calcium, Calcium Channels, Muscle Contraction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 103 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
