
To study the formation of intracellular glyceraldehyde-derived advanced glycation end products (Glycer-AGEs) in the presence of high concentrations of fructose.Cells of the human hepatocyte cell line Hep3B were incubated with or without fructose for five days, and the corresponding cell lysates were separated by two-dimensional gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Glycer-AGEs were detected with the anti-Glycer-AGEs antibody. Furthermore, the identification of the proteins that are modified by glyceraldehyde in the presence of high concentrations of fructose was conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The protein and mRNA levels were determined by Western blotting and real-time reverse transcription PCR, respectively.The results of the two-dimensional gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a greater amount of Glycer-AGEs in the sample exposed to high concentrations of fructose than in the control. The detected Glycer-AGEs showed isoelectric points in the range of 8.0-9.0 and molecular weights in the range of 60-80 kDa. The heterogeneous nuclear ribonucleoprotein M (hnRNPM), which plays an important role in regulating gene expression by processing heterogeneous nuclear RNAs to form mature mRNAs, was identified as a modified protein using MALDI-TOF-MS. Increasing the concentration of fructose in the medium induced a concentration-dependent increase in the generated Glycer-AGEs. Furthermore, in an experiment using glyceraldehyde, which is a precursor of Glycer-AGEs, hnRNPM was found to be more easily glycated than the other proteins.The results suggest that glyceraldehyde-modified hnRNPM alters gene expression. This change may cause adverse effects in hepatocytes and may serve as a target for therapeutic intervention.
Glycation End Products, Advanced, Proteomics, Glycosylation, Dose-Response Relationship, Drug, Fructose, Glyceraldehyde, Cell Line, Heterogeneous-Nuclear Ribonucleoprotein Group M, Liver, Non-alcoholic Fatty Liver Disease, Hepatocytes, Humans
Glycation End Products, Advanced, Proteomics, Glycosylation, Dose-Response Relationship, Drug, Fructose, Glyceraldehyde, Cell Line, Heterogeneous-Nuclear Ribonucleoprotein Group M, Liver, Non-alcoholic Fatty Liver Disease, Hepatocytes, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
