Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2023
License: CC 0
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data for: Capturing complex interactions in disease ecology with simplicial sets

Authors: Silk, Matthew J.; Wilber, Mark Q.; Fefferman, Nina H.;

Data for: Capturing complex interactions in disease ecology with simplicial sets

Abstract

Here we provide archived code for: Code for Capturing Complex Interactions in Disease Ecology with Simplicial Sets. Ecology Letters. The code provided can be used to generate the figures used in the manuscript as well as to generate appendix 3 in the supplementary materials. In the paper, we describe how higher-order network approaches can be applied in disease ecology research. We explain what simplicial sets are; why their use would be beneficial in different subject areas; where these areas are: social, transmission, movement/spatial and ecological networks; and when using them would help most in each context. To demonstrate their application, we develop a novel approach to identify how pathogens persist within a host population (see code for Appendix 3 in this repository). We also provide an overview of how to use simplicial sets, highlighting specific metrics, generative models and software. Finally, we synthesize key research questions simplicial sets will help us answer and highlight the methodological developments required.

Software code (R, Python, Julia) to generate the figures (1-4) and appendix 3 in Capturing Complex Interactions in Disease Ecology with Simplicial Sets

Related Organizations
Keywords

Social network, higher-order interaction, FOS: Biological sciences, hypergraph, simplicial complex, epidemiological model, simplicial set, ecological network, Movement network, Dose-response

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 3
  • 1
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
1
3