Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Inorganic Chemistry ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Inorganic Chemistry Communications
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye

Authors: Azam Khan; null Zia-ur-Rehman; Muneeb-ur- Rehman; Rajwali Khan; null Zulfiqar; Amir Waseem; Azhar Iqbal; +1 Authors

CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye

Abstract

Abstract CdS-1 (nanosphers) and CdS-2 (nanocapsule), were synthesized via green synthetic route without using any toxic surfactants by thermolysis of bis (4-benzhydrylpiperazine-1-carbodithioate-κ 2 S, Sʹ)cadmium(II) ( 1 ) and bis (4-benzylpipera-zine-1-carbodithioate-κ 2 S, Sʹ)cadmium(II) ( 2 ), respectively in the presence of ethylenediamine as a solvent. The nanoparticles were characterized by TEM, XRD, SEM, FT-IR UV–Visible and Fluorescence spectroscopy. The TEM results showed the formation of nanospheres (CdS-1) and nanocapsules (CdS-2) from complexes 1 and 2 , respectively. Both CdS nanoparticles (NPs) have hexagonal crystal phase and a band gap value in the visible region as confirmed by the XRD and UV–Visible spectra, respectively. The photoluminescence (PL) data revealed that CdS-2 has longer recombination time of photo-injected electron hole pairs than CdS-1. The similar FT-IR spectra for both CdS NPs, and different HOMO-LUMO gap values for complexes {4.8187 eV ( 1 ) and CdS-2 4.7504 eV ( 2 )} as predicted by DFT calculations suggest that stability of complexes play a key role in controlling morphology. Furthermore, the visible light driven photocatalytic degradation of Congo red dye was observed higher for nanocapsules than nanospheres due to a longer recombination time of photo-injected electron hole pairs.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!