
Abstract CdS-1 (nanosphers) and CdS-2 (nanocapsule), were synthesized via green synthetic route without using any toxic surfactants by thermolysis of bis (4-benzhydrylpiperazine-1-carbodithioate-κ 2 S, Sʹ)cadmium(II) ( 1 ) and bis (4-benzylpipera-zine-1-carbodithioate-κ 2 S, Sʹ)cadmium(II) ( 2 ), respectively in the presence of ethylenediamine as a solvent. The nanoparticles were characterized by TEM, XRD, SEM, FT-IR UV–Visible and Fluorescence spectroscopy. The TEM results showed the formation of nanospheres (CdS-1) and nanocapsules (CdS-2) from complexes 1 and 2 , respectively. Both CdS nanoparticles (NPs) have hexagonal crystal phase and a band gap value in the visible region as confirmed by the XRD and UV–Visible spectra, respectively. The photoluminescence (PL) data revealed that CdS-2 has longer recombination time of photo-injected electron hole pairs than CdS-1. The similar FT-IR spectra for both CdS NPs, and different HOMO-LUMO gap values for complexes {4.8187 eV ( 1 ) and CdS-2 4.7504 eV ( 2 )} as predicted by DFT calculations suggest that stability of complexes play a key role in controlling morphology. Furthermore, the visible light driven photocatalytic degradation of Congo red dye was observed higher for nanocapsules than nanospheres due to a longer recombination time of photo-injected electron hole pairs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
