Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Deep Ranking Model for Spatio-Temporal Highlight Detection From a 360◦ Video

Authors: Youngjae Yu; Sangho Lee 0008; Joonil Na; Jaeyun Kang; Gunhee Kim;

A Deep Ranking Model for Spatio-Temporal Highlight Detection From a 360◦ Video

Abstract

We address the problem of highlight detection from a 360◦ video by summarizing it both spatially and temporally. Given a long 360◦ video, we spatially select pleasantly-looking normal field-of-view (NFOV) segments from unlimited field of views (FOV) of the 360◦ video, and temporally summarize it into a concise and informative highlight as a selected subset of subshots. We propose a novel deep ranking model named as Composition View Score (CVS) model, which produces a spherical score map of composition per video segment, and determines which view is suitable for highlight via a sliding window kernel at inference. To evaluate the proposed framework, we perform experiments on the Pano2Vid benchmark dataset (Su, Jayaraman, and Grauman 2016) and our newly collected 360◦ video highlight dataset from YouTube and Vimeo. Through evaluation using both quantitative summarization metrics and user studies via Amazon Mechanical Turk, we demonstrate that our approach outperforms several state-of-the-art highlight detection methods.We also show that our model is 16 times faster at inference than AutoCam (Su, Jayaraman, and Grauman 2016), which is one of the first summarization algorithms of 360◦ videos.

Related Organizations
Keywords

FOS: Computer and information sciences, I.2.10, I.4, I.5, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, I.2.10; I.4; I.5

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
Green