Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mathematics of Opera...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
Mathematics of Operations Research
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Counting Integral Points in Polytopes via Numerical Analysis of Contour Integration

Counting integral points in polytopes via numerical analysis of contour integration
Authors: Hiroshi Hirai; Ryunosuke Oshiro; Ken’ichiro Tanaka;

Counting Integral Points in Polytopes via Numerical Analysis of Contour Integration

Abstract

In this paper, we address the problem of counting integer points in a rational polytope described by P(y) = {x ∈ Rm: Ax = y, x ≥ 0}, where A is an n × m integer matrix and y is an n-dimensional integer vector. We study the Z transformation approach initiated in works by Brion and Vergne, Beck, and Lasserre and Zeron from the numerical analysis point of view and obtain a new algorithm on this problem. If A is nonnegative, then the number of integer points in P(y) can be computed in [Formula: see text] time and [Formula: see text] space. This improves, in terms of space complexity, a naive DP algorithm with [Formula: see text]-size dynamic programming table. Our result is based on the standard error analysis of the numerical contour integration for the inverse Z transform and establishes a new type of an inclusion-exclusion formula for integer points in P(y). We apply our result to hypergraph b-matching and obtain a [Formula: see text] time algorithm for counting b-matchings in a k-partite hypergraph with n vertices and m hyperedges. This result is viewed as a b-matching generalization of the classical result by Ryser for k = 2 and its multipartite extension by Björklund and Husfeldt.

Keywords

FOS: Computer and information sciences, trapezoidal rule, Discrete Mathematics (cs.DM), \(Z\)-transformation, Hypergraphs, 510, integer points in polytopes, Special polytopes (linear programming, centrally symmetric, etc.), Numerical integration, numerical integration, FOS: Mathematics, counting algorithm, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze