Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ezrin and Moesin Function Together to Promote T Cell Activation

Authors: Peimin Zhu; Richard F. Schmidt; Andrea I. McClatchey; Meredith H. Shaffer; Renell S. Dupree; Bruce D. Freedman; Ichiko Saotome; +1 Authors

Ezrin and Moesin Function Together to Promote T Cell Activation

Abstract

Abstract The highly homologous proteins ezrin, radixin, and moesin link proteins to the actin cytoskeleton. The two family members expressed in T cells, ezrin and moesin, are implicated in promoting T cell activation and polarity. To elucidate the contributions of ezrin and moesin, we conducted a systematic analysis of their function during T cell activation. In response to TCR engagement, ezrin and moesin were phosphorylated in parallel at the regulatory threonine, and both proteins ultimately localized to the distal pole complex (DPC). However, ezrin exhibited unique behaviors, including tyrosine phosphorylation and transient localization to the immunological synapse before movement to the DPC. To ask whether these differences reflect unique requirements for ezrin vs moesin in T cell signaling, we generated mice with conditional deletion of ezrin in mature T cells. Ezrin−/− T cells exhibited normal immunological synapse organization based upon localization of protein kinase C-θ, talin, and phospho-ZAP70. DPC localization of CD43 and RhoGDP dissociation inhibitor, as well as the novel DPC protein Src homology region 2 domain-containing phosphatase-1, was also unaffected. However, recruitment of three novel DPC proteins, ezrin binding protein of 50 kDa, Csk binding protein, and the p85 subunit of PI3K was partially perturbed. Biochemical analysis of ezrin−/− T cells or T cells suppressed for moesin using small interfering RNA showed intact early TCR signaling, but diminished levels of IL-2. The defects in IL-2 production were more pronounced in T cells deficient for both ezrin and moesin. These cells also exhibited diminished phospholipase C-γ1 phosphorylation and calcium flux. We conclude that despite their unique movement and phosphorylation patterns, ezrin and moesin function together to promote T cell activation.

Keywords

Mice, Knockout, Immunological Synapses, Microfilament Proteins, Receptors, Antigen, T-Cell, Membrane Proteins, Mice, Transgenic, Lymphocyte Activation, Cell Line, Mice, Inbred C57BL, Cytoskeletal Proteins, Jurkat Cells, Mice, T-Lymphocyte Subsets, Animals, Humans, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 1%
bronze