Downloads provided by UsageCounts
arXiv: 2004.10971
handle: 10261/336928
Memristive devices have shown great promise to facilitate the acceleration and improve the power efficiency of Deep Learning (DL) systems. Crossbar architectures constructed using these Resistive Random-Access Memory (RRAM) devices can be used to efficiently implement various in-memory computing operations, such as Multiply Accumulate (MAC) and unrolled-convolutions, which are used extensively in Deep Neural Networks (DNNs) and Convolutional Neural Networks (CNNs). However, memristive devices face concerns of aging and non-idealities, which limit the accuracy, reliability, and robustness of Memristive Deep Learning Systems (MDLSs), that should be considered prior to circuit-level realization. This Original Software Publication (OSP) presents MemTorch, an open-source framework for customized large-scale memristive DL simulations, with a refined focus on the co-simulation of device non-idealities. MemTorch also facilitates co-modelling of key crossbar peripheral circuitry. MemTorch adopts a modernized soft-ware engineering methodology and integrates directly with the well-known PyTorch Machine Learning (ML) library
Accepted for Publication in Neurocomputing
FOS: Computer and information sciences, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, 600, 620
FOS: Computer and information sciences, Emerging Technologies (cs.ET), Computer Science - Emerging Technologies, 600, 620
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 55 | |
| downloads | 19 |

Views provided by UsageCounts
Downloads provided by UsageCounts