
doi: 10.1111/febs.12114
pmid: 23289796
Physical, chemical and biological stress factors, such as microbial infection, upregulate the transcription levels of a number of plant genes, coding for the so‐called pathogenesis‐related (PR) proteins. For PR proteins of class‐10 (PR‐10), the biological function remains unclear, despite two decades of scientific research. PR‐10 proteins have a wide distribution throughout the plant kingdom and the class members share size and secondary structure organization. Throughout the years, we and other groups have determined the structures of a number of PR‐10 proteins, both in the crystalline state by X‐ray diffraction and in solution by NMR spectroscopy. Despite the accumulating structural information, our understanding of PR‐10 function is still limited. PR‐10 proteins are rather small (~ 160 amino acids) with a fold consisting of three α helices and seven antiparallel β strands. These structural elements enclose a large hydrophobic cavity that is most probably the key to their functional relevance. Also, the outer surface of these proteins is of extreme interest, as epitopes from a PR‐10 subclass cause allergic reactions in humans.
Models, Molecular, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Amino Acid Sequence, Plants, Plant Proteins
Models, Molecular, Sequence Homology, Amino Acid, Protein Conformation, Molecular Sequence Data, Amino Acid Sequence, Plants, Plant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 233 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
