
arXiv: 2209.13284
In this paper, we propose an algorithm to interpolate between a pair of images of a dynamic scene. While in the past years significant progress in frame interpolation has been made, current approaches are not able to handle images with brightness and illumination changes, which are common even when the images are captured shortly apart. We propose to address this problem by taking advantage of the existing optical flow methods that are highly robust to the variations in the illumination. Specifically, using the bidirectional flows estimated using an existing pre-trained flow network, we predict the flows from an intermediate frame to the two input images. To do this, we propose to encode the bidirectional flows into a coordinate-based network, powered by a hypernetwork, to obtain a continuous representation of the flow across time. Once we obtain the estimated flows, we use them within an existing blending network to obtain the final intermediate frame. Through extensive experiments, we demonstrate that our approach is able to produce significantly better results than state-of-the-art frame interpolation algorithms.
Accepted to WACV 2023. Project website: https://people.engr.tamu.edu/nimak/Papers/WACV2023_Interp . Code: https://github.com/pedrovfigueiredo/frameintIFE . YouTube: https://youtu.be/Re_c-CBlSfI
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
