Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Advanced Materials R...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced Materials Research
Article . 2013 . Peer-reviewed
License: Trans Tech Publications Copyright and Content Usage Policy
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antibacterial Efficacy and Mechanical Properties of Silica Reinforced Natural Rubber (NR) with HPQM Based Neusilin

Authors: Piyaporn Niltui; Sirichai Kanking; Savaeng Techangamvong; Ekachai Wimolmala; Narongrit Sombatsompop; E. Wimolmala;

Antibacterial Efficacy and Mechanical Properties of Silica Reinforced Natural Rubber (NR) with HPQM Based Neusilin

Abstract

This work studied the antibacterial performance and mechanical properties of natural rubber (NR) compound reinforced with commercial silica at various silica loadings form 0, 20, 40 and 60 parts per hundred rubber (phr). 2-Hydroxypropyl-3-Piperazinyl-Quinoline carboxylic acid Methacrylate (HPQM) based Neusilin at loadings of 0, 3 and 5 phr were used as anti-bacterial agent against Escherichaia coli (E.coli) ATCC 25923 and Staphylococcus aureus (S.aureus) ATCC 25922. The antibacterial performance was reported as a clear zone radius by diffusion test and a percentage reduction of bacteria by Plate-Count-Agar (PCA) method. The results suggested that the increasing silica loading in the NR vulcanizates improved the tensile modulus and hardness, but decreased elongation which had optimal tensile strength at 20 phr of silica. Additionally, the HPQM based Neusilin did not affect the mechanical properties of the rubber vulcanizates. The antibacterial results showed that the inhibition zone radius and the percentage reduction increased with increasing HPQM based Neusilin, but decreased with silica filler content. The antibacterial efficacy was inversely related to the reinforcement level of the NR vulcanizates by the silica. The percentage reduction of bacteria of NR compound filled with 5 phr of HPQM based Neusilin achieved 99.9%.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!