Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hidden Markov Model Based Unsupervised Algorithm for Sleep/Wake Identification Using Actigraphy

Authors: Li, Xinyue; Zhang, Yunting; Jiang, Fan; Zhao, Hongyu;

A Hidden Markov Model Based Unsupervised Algorithm for Sleep/Wake Identification Using Actigraphy

Abstract

Actigraphy is widely used in sleep studies but lacks a universal unsupervised algorithm for sleep/wake identification. In this study, we proposed a Hidden Markov Model (HMM) based unsupervised algorithm that can automatically and effectively infer sleep/wake states. It is an individualized data-driven approach that analyzes actigraphy from each individual respectively to learn activity characteristics and further separate sleep and wake states. We used Actiwatch and polysomnography (PSG) data from 43 individuals in the Multi-Ethnic Study of Atherosclerosis to evaluate the performance of our method. Epoch-by-epoch comparisons were made between our HMM algorithm and that embedded in the Actiwatch software (AS). The percent agreement between HMM and PSG was 85.7%, and that between AS and PSG was 84.7%. Positive predictive values for sleep epochs were 85.6% and 84.6% for HMM and AS, respectively, and 95.5% and 85.6% for wake epochs. Both methods have similar performance and tend to overestimate sleep and underestimate wake compared to PSG. Our HMM approach is able to quantify the variability in activity counts that allow us to differentiate relatively active and sedentary individuals: individuals with higher estimated variabilities tend to show more frequent sedentary behaviors. In conclusion, our unsupervised data-driven HMM algorithm achieves slightly better performance compared to the commonly used algorithm in the Actiwatch software. HMM can help expand the application of actigraphy in large-scale studies and in cases where intrusive PSG is hard to acquire or unavailable. In addition, the estimated HMM parameters can characterize individual activity patterns that can be utilized for further analysis.

19 pages, 4 tables, 3 figures The old dataset has been replaced with a new dataset to better evaluate the method by validating against PSG. Thus, the evaluation metrics have all been changed. A major part of the manuscript has been revised

Keywords

FOS: Computer and information sciences, Applications (stat.AP), Statistics - Applications

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green