Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Renal Physiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Renal Physiology
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regulation of NKCC2B by TNF-α in response to salt restriction

Authors: Shoujin Hao; Joseph Salzo; Nicholas R. Ferreri; Mary Hao;

Regulation of NKCC2B by TNF-α in response to salt restriction

Abstract

We have previously shown that TNF-α produced by renal epithelial cells inhibits Na+-K+-2Cl− cotransporter (NKCC2) activity as part of a mechanism that attenuates increases in blood pressure in response to high NaCl intake. As the role of TNF-α in the kidney is still being defined, the effects of low salt intake on TNF-α and NKCC2B expression were determined. Mice given a low-salt (0.02% NaCl) diet (LSD) for 7 days exhibited a 62 ± 7.4% decrease in TNF-α mRNA accumulation in the renal cortex. Mice that ingested the LSD also exhibited an ~63% increase in phosphorylated NKCC2 expression in the cortical thick ascending limb of Henle’s loop and a concomitant threefold increase in NKCC2B mRNA abundance without a concurrent change in NKCC2A mRNA accumulation. NKCC2B mRNA levels increased fivefold in mice that ingested the LSD and also received an intrarenal injection of a lentivirus construct that specifically silenced TNF-α in the kidney (U6-TNF-ex4) compared with mice injected with control lentivirus. Administration of a single intrarenal injection of murine recombinant TNF-α (5 ng/g body wt) attenuated the increases of NKCC2B mRNA by ~50% and inhibited the increase in phosphorylated NKCC2 by ~54% in the renal cortex of mice given the LSD for 7 days. Renal silencing of TNF-α decreased urine volume and NaCl excretion in mice given the LSD, effects that were reversed when NKCC2B was silenced in the kidney. Collectively, these findings demonstrate that downregulation of renal TNF-α production in response to low-salt conditions contributes to the regulation of NaCl reabsorption via an NKCC2B-dependent mechanism.

Related Organizations
Keywords

Kidney Cortex, Tumor Necrosis Factor-alpha, Blood Pressure, Diet, Sodium-Restricted, Sodium Chloride, Mice, Gene Knockdown Techniques, Loop of Henle, Animals, Phosphorylation, Solute Carrier Family 12, Member 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
bronze