Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA-dependent protein kinase and its inhibition in support of radiotherapy

Authors: Eva, Novotná; Aleš, Tichý; Jaroslav, Pejchal; Emílie, Lukášová; Barbora, Salovská; Jiřina, Vávrová;

DNA-dependent protein kinase and its inhibition in support of radiotherapy

Abstract

Radiotherapy has been used as a treatment of almost 50% of all malignant tumors. The aim of this review is to provide a comprehensive overview of the recent knowledge in the field of molecular mechanisms of radiation-induced double-stranded breaks (DSB) repair. This paper gives particular emphasis to a key DNA repair enzyme, DNA-dependent protein kinase (DNA-PK), which plays a pivotal role in non-homologous end-joining. Furthermore, we discuss possibilities of DNA-PK inhibition and other molecular approaches employed in order to facilitate radiotherapy.We have reviewed the recent studies using novel potent and selective small-molecular DNA-PK inhibitors and we conclude that targeted inhibition of DNA repair proteins like DNA-PK in cancer cells, in combination with ionizing radiation, improves the efficacy of cancer therapy while minimizing side-effects of ionizing radiation. Moreover, the recent discovery of short interfering RNA (siRNA) and signal interfering DNA (siDNA)-based therapeutics, or small peptides and RNA, shows a new opportunity of selective and safe application of biological treatment. All of these approaches are believed to contribute to more personalized anti-cancer therapy.

Related Organizations
Keywords

Radiation-Sensitizing Agents, DNA Repair, Radiotherapy, Neoplasms, Animals, Humans, DNA-Activated Protein Kinase

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!