Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Industrial Ecology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
Journal of Industrial Ecology
Article . 2024 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scenario analysis of supply‐ and demand‐side solutions for circular economy and climate change mitigation in the global building sector

Authors: Pauliuk, Stefan; Carrer, Fabio; Heeren, Niko; Hertwich, Edgar G.;

Scenario analysis of supply‐ and demand‐side solutions for circular economy and climate change mitigation in the global building sector

Abstract

AbstractResidential and non‐residential buildings are a major contributor to human well‐being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material‐related emissions gain relevance. The circular economy (CE) strategies, narrow, slow, and close, together with wooden buildings, can reduce material‐related emissions. We provide a comprehensive set of building stock transformation scenarios for 10 world regions until 2060, using the resource efficiency climate change model of the stock–flow–service nexus and including the full CE spectrum plus wood‐intensive buildings. The 2020–2050 global cumulative new construction ranges from 150 to 280 billion m2 for residential and 70‐120 billion m2 for non‐residential buildings. Ambitious CE reduces cumulative 2020–2050 primary material demand from 80 to 30 gigatons (Gt) for cement and from 35 to 15 Gt for steel. Lowering floor space demand by 1 m2 per capita leads to global savings of 800‐2500 megatons (Mt) of cement, 300‐1000 Mt of steel, and 3‐10 Gt CO2‐eq, depending on industry decarbonization and CE roll‐out. Each additional Mt of structural timber leads to savings of 0.4‐0.55 Mt of cement, 0.6‐0.85 Mt of steel, and 0.8‐1.8 Mt CO2‐eq of system‐wide GHGE. CE reduces 2020–2050 cumulative GHGE by up to 44%, where the highest contribution comes from the narrow CE strategies, that is, lower floorspace and lightweight buildings. Very low carbon emission trajectories are possible only when combining supply‐ and demand‐side strategies. This article met the requirements for a gold‐gold JIE data openness badge described at http://jie.click/badges.

Country
Germany
Keywords

550, 577, 620, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Green
hybrid