Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A dual role for IQGAP1 in regulating exocytosis

Authors: Mahasin A. Osman; Eric N. Rittmeyer; Shu-Chan Hsu; Samira Daniel; Samira Daniel;

A dual role for IQGAP1 in regulating exocytosis

Abstract

Polarized secretion is a tightly regulated event generated by conserved, asymmetrically localized multiprotein complexes, and the mechanism(s) underlying its temporal and spatial regulation are only beginning to emerge. Although yeast Iqg1p has been identified as a positional marker linking polarity and exocytosis cues, studies on its mammalian counterpart, IQGAP1, have focused on its role in organizing cytoskeletal architecture, for which the underlying mechanism is unclear. Here, we report that IQGAP1 associates and co-localizes with the exocyst-septin complex, and influences the localization of the exocyst and the organization of septin. We further show that activation of CDC42 GTPase abolishes this association and inhibits secretion in pancreatic β-cells. Whereas the N-terminus of IQGAP1 binds the exocyst-septin complex, enhances secretion and abrogates the inhibition caused by CDC42 or the depletion of IQGAP1, the C-terminus, which binds CDC42, inhibits secretion. Pulse-chase experiments indicate that IQGAP1 influences protein-synthesis rates, thus regulating exocytosis. We propose and discuss a model in which IQGAP1 serves as a conformational switch to regulate exocytosis.

Keywords

Base Sequence, Vesicular Transport Proteins, Cell Polarity, Models, Biological, Exocytosis, Phosphoric Monoester Hydrolases, Recombinant Proteins, Cell Line, GTP Phosphohydrolases, Protein Structure, Tertiary, Cytoskeletal Proteins, Mice, Insulin-Secreting Cells, Multiprotein Complexes, Animals, Humans, RNA Interference, RNA, Small Interfering, Septins, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
bronze