Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2007 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High Cyclophilin D Content of Synaptic Mitochondria Results in Increased Vulnerability to Permeability Transition

Authors: James W. Geddes; Kranthi Kumari Naga; Patrick G. Sullivan;

High Cyclophilin D Content of Synaptic Mitochondria Results in Increased Vulnerability to Permeability Transition

Abstract

Mitochondria isolated from synaptosomes are more sensitive to Ca2+overload and the resultant opening of the mitochondrial permeability transition pore (mPTP) than nonsynaptic mitochondria. To identify the mechanisms underlying these differences in Ca2+dynamics, we examined relative levels of mPTP components in synaptic versus nonsynaptic mitochondria. Synaptic mitochondria had higher levels of cyclophilin D when compared with nonsynaptic mitochondria, whereas levels of the voltage-dependent anion channel and the adenine nucleotide translocase were similar in the two mitochondrial fractions. These differences in Ca2+handling between synaptic and nonsynaptic mitochondria were greatly reduced in cyclophilin D null [Ppif−/−(peptidylprolyl isomerase F)] mice. Higher concentrations of cyclosporine A, which interacts with cyclophilin D to delay mPTP opening, were necessary to increase the Ca2+uptake capacity of synaptic versus nonsynaptic mitochondria. To determine whether the differences in Ca2+handling might reflect the relative abundance of neuronal and glial mitochondria in the two mitochondrial fractions, we compared cyclophilin D levels in primary cortical neurons and astrocytes. Primary rat cortical neurons possess higher cyclophilin D levels than do primary astrocytes. In the adult rat brain, cyclophilin D immunoreactivity was abundant in neurons but sparse in astrocytes. Together, these results demonstrate that the Ca2+handling differences observed in synaptic versus nonsynaptic mitochondria are primarily the result of the high levels of cyclophilin D in synaptic mitochondria, reflecting the greater proportion of neuronal mitochondria in this fraction. The high levels of cyclophilin D in neuronal mitochondria result in their greater vulnerability to mPT and in higher levels of cyclosporine A being required to inhibit mPTP opening.

Related Organizations
Keywords

Cerebral Cortex, Male, Mice, Knockout, Neurons, Dose-Response Relationship, Drug, Mitochondrial Permeability Transition Pore, Osmolar Concentration, Buffers, Mitochondrial Membrane Transport Proteins, Mitochondria, Rats, Mice, Inbred C57BL, Rats, Sprague-Dawley, Cyclophilins, Mice, Astrocytes, Cyclosporine, Animals, Peptidyl-Prolyl Isomerase F, Calcium

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 10%
Top 10%
Top 1%
hybrid