Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Maǧallaẗ al-abḥāṯ al...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Maǧallaẗ al-abḥāṯ al-handasiyyaẗ
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Maǧallaẗ al-abḥāṯ al-handasiyyaẗ
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Strategic enhancement of the collaborative framework for novelty in retrieval from digital textual data corpus by deploying DPSC and RBWM algorithms for forensic analysis

Authors: Anandha Mala Ganapathy Sankar; Gowri Shanmugam;

Strategic enhancement of the collaborative framework for novelty in retrieval from digital textual data corpus by deploying DPSC and RBWM algorithms for forensic analysis

Abstract

This paper proposes two advanced algorithms embedded into an integrated system; one is a Dynamic Path Selection Clustering (DPSC) algorithm for the document clustering and the other is the Rearward Binary Window Match (RBWM) algorithm for the user’s search engine. The DPSC algorithm is derived from the concept of Google’s crawler technique implemented in offline processing and the RBWM algorithm for search engine is derived by utilizing the techniques of other search algorithms. The proposed system is being accomplished for giving an appropriate data structure to the input dataset content. The dataset used as input is the Enron dataset, which is large in volume and unstructured. The system is designed with the help of integrating all the individual and independent units into a system by bringing them under one frame and the units are data preprocessing, document clustering, mapping of clusters and search engine. This system, with fine refining integrated frame, would likely evidence in a better way, since simple definition of the system for data retrieval affects the consistency of irrelevant information retrieval for evidencing to be increased. Though there are plenty of existing systems in forensic department with only simple definition of search engines, without any other processes the irrelevancy in retrieval is seen to a larger extent. Consequently, a design of this integrated system, which is automated in process by using the above well defined configured units, is proposed. This systematic approach is for adequate use of digital textual evidences, which assists in quicker crime identification rate. The outcomes of the proposed system are analyzed by obtaining the precision and recall values and comparing them with the results of Metasearch engines like Dogpile and Metacrawler, to test the efficacy in retrieval rate.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold