<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper proposes two advanced algorithms embedded into an integrated system; one is a Dynamic Path Selection Clustering (DPSC) algorithm for the document clustering and the other is the Rearward Binary Window Match (RBWM) algorithm for the user’s search engine. The DPSC algorithm is derived from the concept of Google’s crawler technique implemented in offline processing and the RBWM algorithm for search engine is derived by utilizing the techniques of other search algorithms. The proposed system is being accomplished for giving an appropriate data structure to the input dataset content. The dataset used as input is the Enron dataset, which is large in volume and unstructured. The system is designed with the help of integrating all the individual and independent units into a system by bringing them under one frame and the units are data preprocessing, document clustering, mapping of clusters and search engine. This system, with fine refining integrated frame, would likely evidence in a better way, since simple definition of the system for data retrieval affects the consistency of irrelevant information retrieval for evidencing to be increased. Though there are plenty of existing systems in forensic department with only simple definition of search engines, without any other processes the irrelevancy in retrieval is seen to a larger extent. Consequently, a design of this integrated system, which is automated in process by using the above well defined configured units, is proposed. This systematic approach is for adequate use of digital textual evidences, which assists in quicker crime identification rate. The outcomes of the proposed system are analyzed by obtaining the precision and recall values and comparing them with the results of Metasearch engines like Dogpile and Metacrawler, to test the efficacy in retrieval rate.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |