Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Estadua...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Science of The Total Environment
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A 13-year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning

Authors: Godoy-Silva, Daniely; Nogueira, Raquel F.P.; Campos, M. Lucia A.M.;

A 13-year study of dissolved organic carbon in rainwater of an agro-industrial region of São Paulo state (Brazil) heavily impacted by biomass burning

Abstract

This work presents the first comprehensive study of DOC in rainwater in a tropical agro-industrial region in central São Paulo State. The DOC concentrations ranged from 15 to 4992μmolCL-1, with an overall volume weighted mean (VWM) of 288±17μmolCL-1 (n=881). The number of fire spots accumulated within each year of this study was positively correlated to the VWM concentration of DOC in rainwater. During the whole study period, higher VWM DOC concentrations were found during the dry months, despite the phasing out of agricultural fires in sugar cane plantations. The evidence suggested that inputs of atmospheric soluble organic carbon from biomass burning exceeded those from vehicular fuel combustion and biogenic sources. In most cases, dilution of DOC according to precipitation volume was minimal, showing that in-cloud processes were dominant for this species. In contrast, most of the volatile dissolved organic carbon (VDOC) appeared to be removed from the atmosphere in the first milliliter or so of rain, showing a dominance of below-cloud scavenging. VDOC contributed a significant fraction of the DOC for 62% of the samples analyzed, ranging from 5.1 to 488μmolCL-1 (n=552). The average wet deposition flux of DOC was 49kgCha-1yr-1, with VDOC accounting for 10% of the total. This dissolved carbon flux is higher than the estimated world average (34kgCha-1yr-1). The DOC in the rainwater was mostly labile (75% on average) and rapidly bioavailable (within days to weeks), in contrast to refractory dissolved carbon found in rainwater from regions where fossil fuel combustion is the dominant source. The findings of this work indicate that biomass burning can lead to important atmospheric inputs of readily available organic matter to land and to the open ocean.

Keywords

550, Biofuel, Wet deposition, Vegetation fire, Carbon flux, DOC bioavailability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
Green
bronze