<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25098621
The significance of archaea in regulating biogeochemical processes has led to an interest in their community compositions. Using 454 pyrosequencing, the present study examined the archaeal communities along a subtropical estuary, Pearl Estuary, China. Marine Group I Thaumarchaeota (MG-I) were predominant in freshwater sites and one novel subgroup of MG-I, that is MG-Iν, was proposed. In addition, the previously defined MG-Iα II was grouped into two clusters (MG-Iα II-1, II-2). MG-Iα II-1 and MG-Iλ II were both freshwater-specific, with MG-Iα II-1 being prevalent in the oxic water and MG-Iλ II in the hypoxic water. Salinity, dissolved oxygen, nutrients and pH were the most important determinants that shaped the differential distribution of MG-I subgroups along Pearl Estuary. Marine Group II Euryarchaeota (MG-II) dominated the saltwater sites, but their abundance was higher in surface waters. The phylogenetic patterns of MG-I subgroups and their habitat preferences provide insight into their phylogeographic relationships. These results highlight the diversification of various ecotypes of archaea, especially of MG-I, under distinct environmental factors in Pearl Estuary, which are of great value for further exploring their ecological functions.
China, Salinity, Molecular Sequence Data, Biodiversity, Archaea, DNA, Archaeal, RNA, Ribosomal, 16S, Seawater, Estuaries, Phylogeny
China, Salinity, Molecular Sequence Data, Biodiversity, Archaea, DNA, Archaeal, RNA, Ribosomal, 16S, Seawater, Estuaries, Phylogeny
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |