Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEMS Microbiology Ec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEMS Microbiology Ecology
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary

Authors: Shaolan Yu; Xiao-Hua Zhang; Jiwen Liu; Meixun Zhao; Biyan He; Biyan He;

Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary

Abstract

The significance of archaea in regulating biogeochemical processes has led to an interest in their community compositions. Using 454 pyrosequencing, the present study examined the archaeal communities along a subtropical estuary, Pearl Estuary, China. Marine Group I Thaumarchaeota (MG-I) were predominant in freshwater sites and one novel subgroup of MG-I, that is MG-Iν, was proposed. In addition, the previously defined MG-Iα II was grouped into two clusters (MG-Iα II-1, II-2). MG-Iα II-1 and MG-Iλ II were both freshwater-specific, with MG-Iα II-1 being prevalent in the oxic water and MG-Iλ II in the hypoxic water. Salinity, dissolved oxygen, nutrients and pH were the most important determinants that shaped the differential distribution of MG-I subgroups along Pearl Estuary. Marine Group II Euryarchaeota (MG-II) dominated the saltwater sites, but their abundance was higher in surface waters. The phylogenetic patterns of MG-I subgroups and their habitat preferences provide insight into their phylogeographic relationships. These results highlight the diversification of various ecotypes of archaea, especially of MG-I, under distinct environmental factors in Pearl Estuary, which are of great value for further exploring their ecological functions.

Related Organizations
Keywords

China, Salinity, Molecular Sequence Data, Biodiversity, Archaea, DNA, Archaeal, RNA, Ribosomal, 16S, Seawater, Estuaries, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
gold