Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hyperglycemia Suppresses ABCA1 Expression in Vascular Smooth Muscle Cells

Authors: Xiao Yu; Koji Murao; Hisashi Masugata; Junhun Li; Guo-Xing Zhang; Hitomi Imachi; Takamasa Nishiuchi; +3 Authors

Hyperglycemia Suppresses ABCA1 Expression in Vascular Smooth Muscle Cells

Abstract

Hyperglycemia is a major risk factor for atherosclerotic disease. The ATP-binding cassette transporter A1 (ABCA1) functions as a pivotal regulator of lipid efflux from cells to apolipoproteins and is thus involved in lowering the risk of atherosclerosis. In this study, we have examined the glucose-mediated regulation of the ABCA1 gene expression in vascular smooth muscle cells. ABCA1 expression was examined by real-time polymerase chain reaction (PCR), Western blot analysis, and reporter gene assay. The results showed that the expression of the ABCA1 mRNA and protein decreased after the cells were treated with 22.4 mM glucose for 48 h. The transcriptional activity of the ABCA1 promoter paralleled the endogenous expression of the ABCA1 gene. Next, we used inhibitors of certain signal transduction pathways to demonstrate that the glucose-induced ABCA1 suppression is sensitive to the p38-mitogen-activated protein kinase (MAPK) inhibitors. The expression of a constitutively active form of p38-MAPK in the cells inhibited the ABCA1 promoter activity, irrespective of the presence of glucose. A dominant-negative mutant of p38-MAPK abrogated the inhibitory effect of glucose on the ABCA1 promoter activity. These results indicate that the glucose-induced suppression of ABCA1 expression is partially mediated by the activation of the p38-MAPK pathway.

Related Organizations
Keywords

Transcription, Genetic, MAP Kinase Signaling System, Pyridines, Myocytes, Smooth Muscle, Imidazoles, p38 Mitogen-Activated Protein Kinases, Muscle, Smooth, Vascular, Glucose, Gene Expression Regulation, Hyperglycemia, Humans, ATP-Binding Cassette Transporters, Promoter Regions, Genetic, Cells, Cultured, ATP Binding Cassette Transporter 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!