Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Orbital Architecture of Qatar-6: A Fully Aligned 3-Body System?

Authors: Rice, Malena; Wang, Songhu; Gerbig, Konstantin; Wang, Xian-Yu; Dai, Fei; Tyler, Dakotah; Isaacson, Howard; +1 Authors

The Orbital Architecture of Qatar-6: A Fully Aligned 3-Body System?

Abstract

The evolutionary history of an extrasolar system is, in part, fossilized through its planets' orbital orientations relative to the host star's spin axis. However, spin-orbit constraints for warm Jupiters -- particularly in binary star systems, which are amenable to a wide range of dynamical processes -- are relatively scarce. We report a measurement of the Rossiter-McLaughlin effect, observed with the Keck/HIRES spectrograph, across the transit of Qatar-6 A b: a warm Jupiter orbiting one star within a binary system. From this measurement, we obtain a sky-projected spin-orbit angle $λ={0.1\pm2.6}^{\circ}$. Combining this new constraint with the stellar rotational velocity of Qatar-6 A that we measure from TESS photometry, we derive a true obliquity $ψ={21.82^{+8.86}_{-18.36}}^{\circ}$ -- consistent with near-exact alignment. We also leverage astrometric data from Gaia DR3 to show that the Qatar-6 binary star system is edge-on ($i_{B}={90.17^{+1.07}_{-1.06}}^{\circ}$), such that the stellar binary and the transiting exoplanet orbit exhibit line-of-sight orbit-orbit alignment. Ultimately, we demonstrate that all current constraints for the 3-body Qatar-6 system are consistent with both spin-orbit and orbit-orbit alignment. High-precision measurements of the projected stellar spin rate of the host star and the sky-plane geometry of the transit relative to the binary plane are required to conclusively verify the full 3D configuration of the system.

17 pages, 7 figures, accepted to AJ

Keywords

Earth and Planetary Astrophysics (astro-ph.EP), Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Solar and Stellar Astrophysics (astro-ph.SR), Astrophysics - Earth and Planetary Astrophysics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green