Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1995
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases

Authors: Kim, E Kim, Eunjoon; Niethammer, M; Rothshild, A; Jan, YN; Sheng, M;

Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases

Abstract

ANCHORING of ion channels at specific subcellular sites is critical for neuronal signalling, but the mechanisms underlying channel localization and clustering are largely unknown (reviewed in ref. 1). Voltage-gated K+ channels are concentrated in various neuronal domains, including presynaptic terminals, nodes of Ranvier and dendrites, where they regulate local membrane excitability. Here we present functional and biochemical evidence that cell-surface clustering of Shaker-subfamily K+ channels is mediated by the PSD-95 family of membrane-associated putative guanylate kinases, as a result of direct binding of the carboxy-terminal cytoplasmic tails to the K+ channel subunits to two PDZ (also known as GLGF or DHR) domains in the PSD-95 protein. The ability of PDZ domains to function as independent modules for protein-protein interaction, and their presence in other junction-associated molecules (such as ZO-1 (ref. 3) and syntrophin), suggest that PDZ-domain-containing polypeptides may be widely involved in the organization of proteins at sites of membrane specialization.

Keywords

571, Potassium Channels, Cell Membrane, Guinea Pigs, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Brain, Membrane Proteins, Nerve Tissue Proteins, Cell Line, Discs Large Homolog 1 Protein, Potassium Channels, Voltage-Gated, Animals, Humans, Kv1.4 Potassium Channel, Amino Acid Sequence, Cloning, Molecular, Nucleoside-Phosphate Kinase, Disks Large Homolog 4 Protein, Guanylate Kinases, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    953
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
953
Top 1%
Top 0.1%
Top 0.1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!