<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17376774
The Mediator complex associates with RNA polymerase II (RNAPII) at least partly via the RNAPII C-terminal repeat domain (CTD). This association greatly stimulates the CTD kinase activity of general transcription factor TFIIH, and subsequent CTD phosphorylation is involved in triggering promoter clearance. Here, highly purified proteins and a protein dissociation assay were used to investigate whether the RNAPII.Mediator complex (holo-RNAPII) can be disrupted by CTD phosphorylation, thereby severing one of the bonds that stabilize promoter-associated initiation complexes. We report that CTD phosphorylation by the serine 5-specific TFIIH complex, or its kinase module TFIIK, is indeed sufficient to dissociate holo-RNAPII. Surprisingly, phosphorylation by the CTD serine 2-specific kinase CTDK1 also results in dissociation. Moreover, the Mediator-induced stimulation of CTD phosphorylation previously reported for TFIIH is also observed with CTDK1 kinase. An unrelated CTD-binding protein, Rsp5, is capable of stimulating this CTD kinase activity as well. These data shed new light on mechanisms that drive the RNAPII transcription cycle and suggest a mechanism for the enhancement of CTD kinase activity by the Mediator complex.
Saccharomyces cerevisiae Proteins, Transcription, Genetic, Terminal Repeat Sequences, DNA-Directed RNA Polymerases, Saccharomyces cerevisiae, Cyclin-Dependent Kinases, Protein Structure, Tertiary, Gene Expression Regulation, Fungal, RNA Polymerase II, Phosphorylation, Promoter Regions, Genetic, Protein Kinases, Transcription Factor TFIIH
Saccharomyces cerevisiae Proteins, Transcription, Genetic, Terminal Repeat Sequences, DNA-Directed RNA Polymerases, Saccharomyces cerevisiae, Cyclin-Dependent Kinases, Protein Structure, Tertiary, Gene Expression Regulation, Fungal, RNA Polymerase II, Phosphorylation, Promoter Regions, Genetic, Protein Kinases, Transcription Factor TFIIH
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 100 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |