Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EBioMedicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2021
Data sources: DOAJ
SSRN Electronic Journal
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative Validation of Three DNA Methylation Algorithms of Ageing and a Frailty Index in Relation to Mortality: Results From the ESTHER Cohort Study

Authors: Xiangwei Li; Yan Zhang; Xīn Gào; Bernd Holleczek; Ben Schöttker; Hermann Brenner;

Comparative Validation of Three DNA Methylation Algorithms of Ageing and a Frailty Index in Relation to Mortality: Results From the ESTHER Cohort Study

Abstract

Three DNA methylation (DNAm) based algorithms, DNAm PhenoAge acceleration (AgeAccelPheno), DNAm GrimAge acceleration (AgeAccelGrim), and mortality risk score (MRscore), based on methylation in 513, 1030, and 10 CpGs, respectively, were established to predict health outcomes and mortality. We aimed to compare and validate the predictive ability of these scores and frailty in relation to mortality in a population-based cohort from Germany.DNA methylation in whole blood was measured by the Infinium Methylation EPIC BeadChip kit (EPIC, Illumina, San Diego, CA, USA) in two random subsets of the ESTHER cohort study (n = 741 and n = 1030). AgeAccelPheno, AgeAccelGrim, and a revised MRscore to adapt EPIC, the MRscore with 8 CpGs (MRscore-8CpGs), were calculated. Frailty was assessed by a frailty index (FI).During 17 years of follow-up, 458 deaths were observed. All DNAm algorithms and FI were positively correlated with each other. AgeAccelPheno, AgeAccelGrim, MRscore, and FI showed independent associations with all-cause mortality [hazard ratio (95% CI) per SD increase = 1·32 (1·19-1·46), 1·47 (1·32-1·64), 1·73 (1·49-2·01), and 1·31 (1·20-1·43), respectively]. Harrell's C-statistic was 0·710 for a model predicting mortality by age, sex, and leukocyte composition and increased to 0·759 in a model including MRscore-8CpGs and FI. The predictive performance was further improved (Harrell's C-statistic = 0·766) when additionally including AgeAccelPheno and AgeAccelGrim into the model.The combination of a DNA methylation score based on 8 CpGs only and an easy to ascertain frailty index may strongly enhance mortality prediction beyond age and sex.The ESTHER study was funded by grants from the Baden-Württemberg state Ministry of Science, Research and Arts (Stuttgart, Germany), the Federal Ministry of Education and Research (Berlin, Germany), the Federal Ministry of Family Affairs, Senior Citizens, Women and Youth (Berlin, Germany), and the Saarland State Ministry of Health, Social Affairs, Women and the Family (Saarbrücken, Germany). The work of Xiangwei Li was supported by a grant from Fondazione Cariplo (Bando Ricerca Malattie invecchiamento, #2017-0653).

Keywords

Male, Medicine (General), Aging, Research paper, frailty, Epigenesis, Genetic, Cohort Studies, R5-920, Germany, Humans, age acceleration, Aged, DNA methylation, Frailty, R, High-Throughput Nucleotide Sequencing, Sequence Analysis, DNA, DNA Methylation, Middle Aged, mortality, Medicine, CpG Islands, Female, epigenetic clock, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Green
gold