
arXiv: 1801.04487
Apart from few exceptions, the mathematical runtime analysis of evolutionary algorithms is mostly concerned with expected runtimes. In this work, we argue that stochastic domination is a notion that should be used more frequently in this area. Stochastic domination allows to formulate much more informative performance guarantees, it allows to decouple the algorithm analysis into the true algorithmic part of detecting a domination statement and the probability-theoretical part of deriving the desired probabilistic guarantees from this statement, and it helps finding simpler and more natural proofs. As particular results, we prove a fitness level theorem which shows that the runtime is dominated by a sum of independent geometric random variables, we prove the first tail bounds for several classic runtime problems, and we give a short and natural proof for Witt's result that the runtime of any $(��,p)$ mutation-based algorithm on any function with unique optimum is subdominated by the runtime of a variant of the \oea on the \onemax function. As side-products, we determine the fastest unbiased (1+1) algorithm for the \leadingones benchmark problem, both in the general case and when restricted to static mutation operators, and we prove a Chernoff-type tail bound for sums of independent coupon collector distributions.
Significantly extended version of a paper that appeared in the proceedings of EvoCOP 2018
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
FOS: Computer and information sciences, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
