
arXiv: 1002.1417
Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krueger's series for the projection to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about 5 times slower.
LaTeX, 10 pages, 3 figures. Includes some revisions. Supplementary material is available at http://geographiclib.sourceforge.net/tm.html
Physics - Geophysics, FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics, Geophysics (physics.geo-ph)
Physics - Geophysics, FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics, Geophysics (physics.geo-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 74 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
