
arXiv: 2103.01452
In the electricity market, it is quite common that the market participants make "selfish" strategies to harvest the maximum profits for themselves, which may cause the social benefit loss and impair the sustainability of the society in the long term. Regarding this issue, in this work, we will discuss how the social profit can be improved through strategic demand response (DR) management. Specifically, we explore two interaction mechanisms in the market: Nash equilibrium (NE) and Stackelberg equilibrium (SE) among utility companies (UCs) and user-UC interactions, respectively. At the user side, each user determines the optimal energy-purchasing strategy to maximize its own profit. At the UC side, a governmental UC (g-UC) is considered, who aims to optimize the social profit of the market. Meanwhile, normal UCs play games to maximize their own profits. As a result, a basic leader-following problem among the UCs is formulated under the coordination of the independent system operator (ISO). Moreover, by using our proposed demand function amelioration (DFA) strategy, a multi-timescale leader-following problem is formulated. In this case, the maximal market efficiency can be achieved without changing the "selfish instinct" of normal UCs. In addition, by considering the local constraints for the UCs, two projection-based pricing algorithms are proposed for UCs, which can provide approximate optimal solutions for the resulting non-convex social profit optimization problems. The feasibility of the proposed algorithms is verified by using the concept of price of anarchy (PoA) in a multi-UC multi-user market model in the simulation.
33 pages, 15 figures
FOS: Computer and information sciences, :Electrical and electronic engineering::Control and instrumentation::Control engineering [Engineering], Computer Science - Computer Science and Game Theory, FOS: Electrical engineering, electronic engineering, information engineering, Electricity Market, Systems and Control (eess.SY), Leader-Following Approach, Electrical Engineering and Systems Science - Systems and Control, Computer Science and Game Theory (cs.GT)
FOS: Computer and information sciences, :Electrical and electronic engineering::Control and instrumentation::Control engineering [Engineering], Computer Science - Computer Science and Game Theory, FOS: Electrical engineering, electronic engineering, information engineering, Electricity Market, Systems and Control (eess.SY), Leader-Following Approach, Electrical Engineering and Systems Science - Systems and Control, Computer Science and Game Theory (cs.GT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
