Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncotargetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncotarget
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Harnessing Noxa demethylation to overcome Bortezomib resistance in mantle cell lymphoma

Authors: Kieron Dunleavy; Violetta V. Leshchenko; Samir Parekh; Zewei Jiang; Marc A. Weniger; Adrian Wiestner; Wyndham H. Wilson; +2 Authors

Harnessing Noxa demethylation to overcome Bortezomib resistance in mantle cell lymphoma

Abstract

Bortezomib (BZM) is the first proteasome inhibitor approved for relapsed Mantle Cell Lymphoma (MCL) with durable responses seen in 30%-50% of patients. Given that a large proportion of patients will not respond, BZM resistance is a significant barrier to use this agent in MCL. We hypothesized that a subset of aberrantly methylated genes may be modulating BZM response in MCL patients. Genome-wide DNA methylation analysis using a NimbleGen array platform revealed a striking promoter hypomethylation in MCL patient samples following BZM treatment. Pathway analysis of differentially methylated genes identified molecular mechanisms of cancer as a top canonical pathway enriched among hypomethylated genes in BZM treated samples. Noxa, a pro-apoptotic Bcl-2 family member essential for the cytotoxicity of BZM, was significantly hypomethylated and induced following BZM treatment. Therapeutically, we could demethylate Noxa and induce anti-lymphoma activity using BZM and the DNA methytransferase inhibitor Decitabine (DAC) and their combination in vitro and in vivo in BZM resistant MCL cells. These findings suggest a role for dynamic Noxa methylation for the therapeutic benefit of BZM. Potent and synergistic cytotoxicity between BZM and DAC in vitro and in vivo supports a strategy for using epigenetic priming to overcome BZM resistance in relapsed MCL patients.

Keywords

Cell Survival, Mice, Nude, Antineoplastic Agents, Lymphoma, Mantle-Cell, DNA Methylation, Decitabine, Epigenesis, Genetic, Bortezomib, Mice, Drug Resistance, Neoplasm, Cell Line, Tumor, Azacitidine, Animals, Humans, Female, DNA (Cytosine-5-)-Methyltransferases, Promoter Regions, Genetic, Proteasome Inhibitors, Neoplasm Transplantation, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
gold