
E. C. Posner (5) has shown that a ring R is primitive if and only if the corresponding matrix ring Mn(R) is primitive. From this result he is able to deduce that the primitive ideals in Mn(R) are precisely those ideals of the form Mn(P), where P is a primitive ideal in R. This affords an alternative proof that the Jacobson radical of Mn(R) is Mn(J), where J is the Jacobson radical of R. But Patterson (3, 4) has shown that this last result does not hold in general for rings of infinite matrices and thus that the above result concerning primitive ideals cannot be extended to the infinite case. Nevertheless in this paper we are able to show that Posner's result on primitive rings does extend to infinite matrix rings. Patterson's result depends on showing that if the Jacobson radical J of R is not right vanishing then a certain matrix with entries from J does not lie in the Jacobson radical of the infinite matrix ring. In the final section of this paper we consider a ring R with this property and exhibit a primitive ideal in the infinite matrix ring, which does not arise, as above, from a primitive ideal in R. Finally the Jacobson radical of this ring is determined.
associative rings
associative rings
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
