Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1993 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane.

Authors: O, Boudker; A H, Futerman;

Detection and characterization of ceramide-1-phosphate phosphatase activity in rat liver plasma membrane.

Abstract

A calcium-dependent ceramide (Cer) kinase was recently detected in human leukemia (HL-60) cells (Kolesnick, R.N., and Hemer, M.R. (1990) J. Biol. Chem. 265, 18803-18808) where it may function in terminating the regulatory effects of Cer, and in synaptic vesicles (Bajjalieh, S. M., Martin, T. F. J., and Floor, E. (1989) J. Biol. Chem. 264, 14354-14360). We now demonstrate that the addition of both Cer-1-phosphate (Cer-1-P) and a short-acyl chain analog of Cer-1-P,N-hexanoylsphingosine-1-phosphate (C6-Cer-1-P) to cultured cells and a variety of subcellular fractions results in rapid degradation to Cer and C6-Cer, respectively. The Cer-1-P phosphatase activity is enriched in a rat liver plasma membrane fraction and appears to be distinct from the phosphatase that hydrolyzes phosphatidic acid (PA), PA phosphohydrolase, as shown by the difference in sensitivity of Cer-1-P and PA hydrolysis to propranolol, detergent, and heat treatment. Moreover, the Km of Cer-1-P hydrolysis is 10-fold lower than the Km of PA hydrolysis in plasma membrane. PA is a noncompetitive inhibitor of Cer-1-P hydrolysis, with an inhibition constant 1-1.5-fold higher than the Km of Cer-1-P hydrolysis. In contrast, Cer-1-P does not inhibit PA hydrolysis. Finally, we describe the synthesis of a novel analog of Cer-1-P which is not hydrolyzed in vitro and in vivo and is internalized in cultured cells by endocytosis. These results are discussed in relation to the possible roles of Cer-1-P in regulating intracellular levels of Cer.

Related Organizations
Keywords

Hydrolysis, Cell Membrane, Phosphatidic Acids, CHO Cells, Ceramides, Lipids, Phosphoric Monoester Hydrolases, Rats, Liver, Cricetinae, Tumor Cells, Cultured, Animals, Humans, Rats, Wistar

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%
gold