Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS - CLINICAL APPLICATIONS
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
PROTEOMICS
Article . 2010
versions View all 3 versions
addClaim

Quantitative proteome analysis of detergent‐resistant membranes identifies the differential regulation of protein kinase C isoforms in apoptotic T cells

Authors: Therese, Solstad; Elisa, Bjørgo; Christian J, Koehler; Margarita, Strozynski; Knut Martin, Torgersen; Kjetil, Taskén; Bernd, Thiede;

Quantitative proteome analysis of detergent‐resistant membranes identifies the differential regulation of protein kinase C isoforms in apoptotic T cells

Abstract

AbstractSeveral lines of evidence suggest that detergent‐resistant membranes (DRMs) (also known as lipid rafts and glycosphingolipid‐enriched microdomains) may have a role in signaling pathways of apoptosis. Here, we developed a method that combines DRMs isolation and methanol/chloroform extraction with stable isotope labeling with amino acids in cell culture‐based quantitative proteome analysis of DRMs from control and cisplatin‐induced apoptotic Jurkat T cells. This approach enabled us to enrich proteins with a pivotal role in cell signaling of which several were found with increased or decreased amounts in DRMs upon induction of apoptosis. Specifically, we show that three isoforms of protein kinase C (PKC) are regulated differently upon apoptosis. Although PKCα which belongs to the group of conventional PKCs is highly up‐regulated in DRMs, the levels of two novel PKCs, PKCη and PKCθ, are significantly reduced. These alterations/differences in PKC regulation are verified by immunoblotting and confocal microscopy. In addition, a specific enrichment of PKCα in apoptotic blebs and buds is shown. Furthermore, we observe an increased expression of ecto‐PKCα as a result of exposure to cisplatin using flow cytometry. Our results demonstrate that in‐depth proteomic analysis of DRMs provides a tool to study differential localization and regulation of signaling molecules important in health and disease.

Related Organizations
Keywords

Proteomics, Proteome, T-Lymphocytes, Antineoplastic Agents, Apoptosis, Cell Fractionation, Jurkat Cells, Membrane Microdomains, Humans, Protein Isoforms, Cisplatin, Protein Kinase C

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!