Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Weierstrass Institut...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.20347/wi...
Other literature type . 2006
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The von Mises model for one-dimensional elastoplastic beams and Prandtl--Ishlinskii hysteresis operators

Authors: Krejčí, Pavel; Sprekels, Jürgen;

The von Mises model for one-dimensional elastoplastic beams and Prandtl--Ishlinskii hysteresis operators

Abstract

In this paper, the one-dimensional equation for the transversal vibrations of an elastoplastic beam is derived from a general three-dimensional system. The plastic behavior is modeled using the classical three-dimensional von Mises plasticity model. It turns out that this single-yield model without hardening leads after a dimensional reduction to a multi-yield one-dimensional hysteresis model with kinematic hardening, given by a hysteresis operator of Prandtl-Ishlinskii type whose density function can be determined explicitly. This result indicates that the use of Prandtl-Ishlinskii hysteresis operators in the modeling of elastoplasticity is not just a questionable phenomenological approach, but in fact quite natural. In addition to the derivation of the model, it is shown that the resulting partial differential equation with hysteresis can be transformed into an equivalent system for which the existence and uniqueness of a strong solution is proved. The proof employs techniques from the mathematical theory of hysteresis operators.

Keywords

ddc:510, von Mises model, elastoplasticity, article, Elastoplasticity, 35Q70, elastoplasticity -- beam equation -- hysteresis operators -- Prandtl-Ishlinskii model -- von Mises model, hysteresis operators, 74N30, 34C55, 510, 74C05, Prandtl-Ishlinskii model, beam equation, 35Q72, 47J40

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green