
arXiv: 1312.2173
Unconstrained submodular maximization captures many NP-hard combinatorial optimization problems, including Max-Cut, Max-Di-Cut, and variants of facility location problems. Recently, Buchbinder et al. presented a surprisingly simple linear time randomized greedy-like online algorithm that achieves a constant approximation ratio of 1/2, matching optimally the hardness result of Feige et al.. Motivated by the algorithm of Buchbinder et al., we introduce a precise algorithmic model called double-sided myopic algorithms. We show that while the algorithm of Buchbinder et al. can be realized as a randomized online double-sided myopic algorithm, no such deterministic algorithm, even with adaptive ordering, can achieve the same approximation ratio. With respect to the Max-Di-Cut problem, we relate the Buchbinder et al. algorithm and our myopic framework to the online algorithm and inapproximation of Bar-Noy and Lampis.
29 pages, 1 figure
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
