Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Romanian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Romanian Journal of Morphology and Embryology
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated cutaneous squamous cell carcinoma grading using deep learning with transfer learning

Authors: Buruiană, Alexandra; Şerbănescu, Mircea-Sebastian; Pop, Bogdan; Gheban, Bogdan-Alexandru; Georgiu, Carmen; Crişan, Doiniţa; Crişan, Maria;

Automated cutaneous squamous cell carcinoma grading using deep learning with transfer learning

Abstract

Introduction: Histological grading of cutaneous squamous cell carcinoma (cSCC) is crucial for prognosis and treatment decisions, but manual grading is subjective and time-consuming. Aim: This study aimed to develop and validate a deep learning (DL)-based model for automated cSCC grading, potentially improving diagnostic accuracy (ACC) and efficiency. Materials and Methods: Three deep neural networks (DNNs) with different architectures (AlexNet, GoogLeNet, ResNet-18) were trained using transfer learning on a dataset of 300 histopathological images of cSCC. The models were evaluated on their ACC, sensitivity (SN), specificity (SP), and area under the curve (AUC). Clinical validation was performed on 60 images, comparing the DNNs’ predictions with those of a panel of pathologists. Results: The models achieved high performance metrics (ACC>85%, SN>85%, SP>92%, AUC>97%) demonstrating their potential for objective and efficient cSCC grading. The high agreement between the DNNs and pathologists, as well as among different network architectures, further supports the reliability and ACC of the DL models. The top-performing models are publicly available, facilitating further research and potential clinical implementation. Conclusions: This study highlights the promising role of DL in enhancing cSCC diagnosis, ultimately improving patient care.

Keywords

Original Paper, Deep Learning, Skin Neoplasms, Carcinoma, Squamous Cell, Humans, Neoplasm Grading

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold