
The recent surge of coronavirus disease 2019 (COVID-19) hospitalizations severely challenges healthcare systems around the globe and has increased the demand for reliable tests predictive of disease severity and mortality. Using multiplexed targeted mass spectrometry assays on a robust triple quadrupole MS setup which is available in many clinical laboratories, we determined the precise concentrations of hundreds of proteins and metabolites in plasma from hospitalized COVID-19 patients. We observed a clear distinction between COVID-19 patients and controls and, strikingly, a significant difference between survivors and nonsurvivors. With increasing length of hospitalization, the survivors' samples showed a trend toward normal concentrations, indicating a potential sensitive readout of treatment success. Building a machine learning multi-omic model that considers the concentrations of 10 proteins and five metabolites, we could predict patient survival with 92% accuracy (area under the receiver operating characteristic curve: 0.97) on the day of hospitalization. Hence, our standardized assays represent a unique opportunity for the early stratification of hospitalized COVID-19 patients.
Machine Learning, Hospitalization, ROC Curve, SARS-CoV-2, Research, Humans, COVID-19, Retrospective Studies
Machine Learning, Hospitalization, ROC Curve, SARS-CoV-2, Research, Humans, COVID-19, Retrospective Studies
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
