Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Pharmacol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmacology and Experimental Therapeutics
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional Adenylyl Cyclase Inhibition in Murine Cardiomyocytes by 2′(3′)-O-(N-Methylanthraniloyl)-Guanosine 5′-[γ-Thio]triphosphate

Authors: Rottlaender, Dennis; Matthes, Jan; Vatner, Stephen F.; Seifert, Roland; Herzig, Stefan;

Functional Adenylyl Cyclase Inhibition in Murine Cardiomyocytes by 2′(3′)-O-(N-Methylanthraniloyl)-Guanosine 5′-[γ-Thio]triphosphate

Abstract

Beta1-adrenergic receptor activation stimulates cardiac L-type Ca2+ channels via adenylyl cyclases (ACs), with AC5 and AC6 being the most important cardiac isoforms. Recently, we have identified 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio-]triphosphate (MANT-GTPgammaS) as a potent competitive AC inhibitor. Intriguingly, MANT-GTPgammaS inhibits AC5 and -6 more potently than other cyclases. These data prompted us to study the effects of MANT-GTPgammaS on L-type Ca2+ currents (ICa,L) in ventricular myocytes of wild-type (WT) and AC5-deficient (AC5-/-) mice by whole-cell recordings. In wild-type myocytes, MANT-GTPgammaS attenuated ICa,L stimulation following isoproterenol application in a concentration-dependent manner (control, +77+/-13%; 100 nM MANT-GTPgammaS, +43+/-6%; 1 microM MANT-GTPgammaS, +21+/-9%; p<0.05). The leftward shift of current-voltage curves was abolished by 1 microM but not by 100 nM MANT-GTPgammaS. In myocytes from AC5-/- mice, the residual stimulation of ICa,L was not further attenuated by the nucleotide, indicating AC5 to be the major AC isoform mediating acute beta-adrenergic stimulation in WT mice. Interestingly, basal ICa,L was lowered by 1 microM but not by 100 nM MANT-GTPgammaS. The decrease was less pronounced in myocytes from AC5-/- mice compared with wild types (-23+/-1 versus -40+/-7%), indicating basal ICa,L to be partly driven by AC5. Collectively, we found a concentration-dependent inhibition of ICa,L by MANT-GTPgammaS, both under basal conditions and following beta-adrenergic stimulation. Comparison of data from wild-type and AC5-deficient mice indicates that AC5 plays a major role in ICa,L activation and that MANT-GTPgammaS predominantly acts via AC5 inhibition.

Related Organizations
Keywords

ddc:610, Calcium Channels, L-Type, Dose-Response Relationship, Drug, 610 Medizin, Isoproterenol, ddc:615, Mice, Inbred C57BL, Mice, 615 Pharmazie, Adenylyl Cyclase Inhibitors, Animals, Myocytes, Cardiac, ortho-Aminobenzoates, Guanosine Triphosphate, Enzyme Inhibitors, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 57
    download downloads 70
  • 57
    views
    70
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
15
Average
Average
Top 10%
57
70
bronze