Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Refractory Metals and Hard Materials
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock

Authors: Mostafa Piri; Hamid Hashemolhosseini; Reza Mikaeil; Mohammad Ataei; Alireza Baghbanan;

Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock

Abstract

Abstract Drilling is an important engineering operation with extensive application in many fields of industry including mining engineering, oil and gas exploration and exploitation, civil engineering, groundwater management, etc. Drill bits must be able to endure enormous stresses that gradually wear them down during the drilling operation. In rock drilling, wear resistance is a key determinant of the drill bit lifetime and hence the drilling cost, thus basically affecting the choice of drilling method for any given rock type. With the advent of new wear-resistant materials, they can be used to improve the resistance of drill bits against wear and erosion. This study investigated the wear resistance of drill bits with tungsten carbide (WC) coating, DLC-Diamond coating, and titanium-silica‑aluminum (TiAlSi) coating when drilling in three types of hard rock, namely Khoshtinat Granite (A1), White Natanz Granite (A2) and Nehbandan Granite (A3). The drilling tests were performed on cuboid specimens using a drilling machine at rotation speeds of 850, 900 and 950 rpm and penetration rates of 12, 18 and 24 mm/min. The results showed that for any fixed drilling conditions, the wear rates of the TiAlSi drill bit in A1, A2, and A3 were respectively 48%, 52%, and 60% lower than those of the WC drill bit. In the same rocks, the Diamond-DLC drill bit also showed 42%, 44.25%, and 55% lower wear rates than the WC drill bit. in addition to the observed changes in wear rate of the drill bits, the surface roughness created by these drills represents the optimum performance of the TiAlSi drill bit. It was observed that, as the mechanical properties of the rock (uniaxial compressive strength, Mohs hardness, Schimazek's abrasivity index and Young's Modulus) increased, the tested drill bits showed wider differences in terms of wear resistance. As the TiAlSi drill bit had the lowest wear rate (27%) and after that, the Diamond-DLC drill bit showed a better wear (30%) performance than the WC drill bit (60%).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!