<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sterol regulatory element-binding proteins (SREBPs) are transcription factors central to the regulation of lipid metabolism. The SREBPs are synthesized as precursor proteins that require proteolytic processing to become transcriptionally active. Whereas the regulation of SREBP-1a and -2 cleavage by cellular sterol content is well defined, much less is known about the regulation of SREBP-1c, the predominant SREBP isoform in the liver. Both insulin and liver X receptor α (LXRα) induce SREBP-1c transcription; however, the respective roles of these factors and the mechanism responsible for proteolytic cleavage of this SREBP isoform are not known. In this study, we compare the effects of insulin and LXR agonist TO-901317 on SREBP-1c expression and transcriptional activity in isolated rat hepatocytes. We report that full induction of the mature and transcriptionally active form of SREBP-1c protein requires insulin. Although activation of LXR leads to the induction of SREBP-1c gene expression and precursor protein, it has a very poor effect in inducing the mature nuclear form of the transcription factor. This may be due to the induction of insulin-induced gene-2a mRNA and protein by LXR activation. The LXR-induced SREBP-1c precursor, however, is rapidly cleaved on acute exposure to insulin via a phosphatidylinositol 3-kinase-dependent mechanism. Finally, we show through experiments in suckling mice that this acute action of insulin to stimulate the proteolytic processing of SREBP-1c is functional in vivo .
Hydrolysis, Receptors, Cytoplasmic and Nuclear, Orphan Nuclear Receptors, Rats, DNA-Binding Proteins, Phosphatidylinositol 3-Kinases, Gene Expression Regulation, Liver, CCAAT-Enhancer-Binding Proteins, Hepatocytes, Animals, Insulin, Protein Isoforms, Sterol Regulatory Element Binding Protein 1, Protein Processing, Post-Translational, Liver X Receptors, Transcription Factors
Hydrolysis, Receptors, Cytoplasmic and Nuclear, Orphan Nuclear Receptors, Rats, DNA-Binding Proteins, Phosphatidylinositol 3-Kinases, Gene Expression Regulation, Liver, CCAAT-Enhancer-Binding Proteins, Hepatocytes, Animals, Insulin, Protein Isoforms, Sterol Regulatory Element Binding Protein 1, Protein Processing, Post-Translational, Liver X Receptors, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 184 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |