Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bone and ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Bone and Mineral Research
Article . 2003 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

p300/CBP Acts as a Coactivator to Cartilage Homeoprotein-1 (Cart1), Paired-Like Homeoprotein, Through Acetylation of the Conserved Lysine Residue Adjacent to the Homeodomain

Authors: Akira Yamaguchi; Takashi Iioka; Shunichi Yamashita; Keizo Furukawa; Hiroyuki Shindo; Tomoo Tsukazaki;

p300/CBP Acts as a Coactivator to Cartilage Homeoprotein-1 (Cart1), Paired-Like Homeoprotein, Through Acetylation of the Conserved Lysine Residue Adjacent to the Homeodomain

Abstract

Abstract The paired-like homeoprotein, Cart1, is involved in skeletal development. We describe here that the general coactivator p300/CBP controls the transcription activity of Cart1 through acetylation of a lysine residue that is highly conserved in other homeoproteins. Acetylation of this residue increases the interaction between p300/CBP and Cart1 and enhances its transcriptional activation. Introduction: Cart1 encodes a paired-like homeoprotein expressed selectively in chondrocyte lineage during embryonic development. Although its target gene remains unknown, gene disruption studies have revealed that Cart1 plays an important role for craniofacial bone formation as well as limb development by cooperating with another homeoprotein, Alx4. In this report, we study the functional involvement of p300/CBP, coactivators with intrinsic histone acetyltransferase (HAT) activity, in the transcriptional control of Cart1. Methods: To study the transcription activity of Cart1, a reporter construct containing a putative Cart1 binding site was transiently transfected with the expression vectors of each protein. The interaction between p300/CBP and Cart1 was investigated by glutathione S-transferase (GST) pull-down, yeast two-hybrid, and immunoprecipitation assays. In vitro acetylation assay was performed with the recombinant p300-HAT domain and Cart1 in the presence of acetyl-CoA. Results and Conclusions: p300 and CBP stimulate Cart1-dependent transcription activity, and this transactivation is inhibited by E1A and Tax, oncoproteins that suppress the activity of p300/CBP. Cart1 binds to p300 in vivo and in vitro, and this requires the homeodomain of Cart1 and N-terminal 139 amino acids of p300. Confocal microscopy analysis shows that Cart1recruits overexpressed and endogenous p300 to a Cart1-specific subnuclear compartment. Cart1 is acetylated in vivo and sodium butyrate and trichostatin A, histone deacetylase inhibitors, markedly enhance the transcription activity of Cart1. Deletion and mutagenesis analysis identifies the 131st lysine that locates immediately adjacent to the homeodomain as a target of p300-HAT, and a point mutation to this residue attenuates the binding affinity to p300 as well as p300-dependent transcription activity. Together, these results indicate that p300/CBP acts as a cotransactivator to Cart1 through a direct interaction and specific lysine acetylation. In addition, because 131st lysine is highly conserved in other types of homeoprotein, this lysine may be a common target for HAT of p300/CBP for these proteins.

Related Organizations
Keywords

Homeodomain Proteins, Transcriptional Activation, Binding Sites, Lysine, Molecular Sequence Data, Nuclear Proteins, Acetylation, Cell Line, Protein Structure, Tertiary, Rats, DNA-Binding Proteins, Mice, Trans-Activators, Animals, Humans, Amino Acid Sequence, E1A-Associated p300 Protein, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Average
hybrid