Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Leukocyte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Leukocyte Biology
Article . 2003 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analysis of the maturation process of dendritic cells deficient for TNF and lymphotoxin-α reveals an essential role for TNF

Authors: Ritter, Uwe; Meissner, Anja; Ott, Jessica; Korner, Heinrich;

Analysis of the maturation process of dendritic cells deficient for TNF and lymphotoxin-α reveals an essential role for TNF

Abstract

Abstract Dendritic cells (DCs) generated from bone marrow (BM) precursor cells of C57BL/6 (B6.WT) mice and cultured in the presence of granulocyte macrophage-colony stimulating factor differentiate to mature BM-DCs spontaneously. These mature DCs are characterized by high levels of major histocompatibility complex (MHC) class II, CD40, and CD86 on their surface. To analyze the involvement of tumor necrosis factor (TNF) and the related cytokine lymphotoxin (LT)α in DC maturation, we studied the development of DCs from the BM of B6.TNF−/−, B6.LTα−/−, and B6.TNF/LTα−/− mice and compared it to B6.WT mice. Although the development of BM precursor cells to the level of immature DCs (CD11c+, MHC class IIlow, CD40low, and CD86low) was equivalent in all genotypes, B6.TNF−/− and B6.TNF/LTα−/− cells showed an impaired capacity to differentiate to mature DCs. In contrast, mature BM-DCs generated from LTα-negative, immature DCs developed like B6.WT cells. Further studies revealed that once matured, the phenotype of all tested genotypes was comparable. They expressed high levels of CD40 and CD86, were exclusively positive for the chemokine receptor (CCR)7 but negative for CCR5 and CCR2, and were able to enter the paracortex of draining lymph nodes. The limited maturation of TNF-deficient BM-DCs could be restored by mixing TNF-negative with TNF-positive Ly5.1 BM cells, and maturation of B6.WT DCs could be blocked with an anti-TNF monoclonal antibody. The substitution of B6.TNF−/− BM cells with recombinant TNF revealed promotion or suppression of BM-DC maturation depending on the point of time of TNF addition.

Related Organizations
Keywords

Mice, Knockout, Receptors, CCR7, Membrane Glycoproteins, 610, Granulocyte-Macrophage Colony-Stimulating Factor, Bone Marrow Cells, Cell Differentiation, Enzyme-Linked Immunosorbent Assay, Dendritic Cells, Flow Cytometry, Mice, Inbred C57BL, Mice, Antigens, CD, Animals, Receptors, Chemokine, B7-2 Antigen, Lymph Nodes, CD40 Antigens, Lymphotoxin-alpha, Cell Division, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze