Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Physiology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TGFβ3 Regulates Periderm Removal Through ΔNp63 in the Developing Palate

Authors: Ferhat Ozturk; Ferhat Ozturk; Lihua Hu; Lihua Hu; Ali Nawshad; Rose-Anne Romano; Zhi Li; +3 Authors

TGFβ3 Regulates Periderm Removal Through ΔNp63 in the Developing Palate

Abstract

The periderm is a flat layer of epithelium created during embryonic development. During palatogenesis, the periderm forms a protective layer against premature adhesion of the oral epithelia, including the palate. However, the periderm must be removed in order for the medial edge epithelia (MEE) to properly adhere and form a palatal seam. Improper periderm removal results in a cleft palate. Although the timing of transforming growth factor β3 (TGFβ3) expression in the MEE coincides with periderm degeneration, its role in periderm desquamation is not known. Interestingly, murine models of knockout (−/−) TGFβ3, interferon regulatory factor 6 (IRF6) (−/−), and truncated p63 (ΔNp63) (−/−) are born with palatal clefts because of failure of the palatal shelves to adhere, suggesting that these genes regulate palatal epithelial differentiation. However, despite having similar phenotypes in null mouse models, no studies have analyzed the possible association between the TGFβ3 signaling cascade and the IRF6/ΔNp63 genes during palate development. Recent studies indicate that regulation of ΔNp63, which depends on IRF6, facilitates epithelial differentiation. We performed biochemical analysis, gene activity and protein expression assays with palatal sections of TGFβ3 (−/−), ΔNp63 (−/−), and wild‐type (WT) embryos, and primary MEE cells from WT palates to analyze the association between TGFβ3 and IRF6/ΔNp63. Our results suggest that periderm degeneration depends on functional TGFβ3 signaling to repress ΔNp63, thereby coordinating periderm desquamation. Cleft palate occurs in TGFβ3 (−/−) because of inadequate periderm removal that impedes palatal seam formation, while cleft palate occurs in ΔNp63 (−/−) palates because of premature fusion. J. Cell. Physiol. 230: 1212–1225, 2015. © 2014 Wiley Periodicals, Inc., A Wiley Company

Keywords

Mice, Knockout, Palate, Epithelial Cells, Phosphoproteins, Epithelium, Mice, Inbred C57BL, Transforming Growth Factor beta3, Interferon Regulatory Factors, Trans-Activators, Animals, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!