
This paper proposes a dynamic constrained many-objective optimization method for solving constrained optimization problems. We first convert a constrained optimization problem (COP) into an equivalent dynamic constrained many-objective optimization problem (DCMOP), then present many-objective optimization evolutionary algorithm with dynamic constraint handling mechanism, called MaDC, to solve the DCMOP, thus the COP is addressed. MaDC uses DE as the search engine, and reference-point-based nondominated sorting approach to select individuals to construct next population. The effectiveness of MaDC has been verified by comparing with peer algorithms.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
