Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Neurosciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Neuroscience
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Neuroscience
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker

Authors: Dechun Chen; William J. Joiner; William J. Joiner; Terry Dean; Corinne J. Smith; Zhifeng Yue; Toshinori Hoshi; +4 Authors

SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker

Abstract

Sleep is a whole-organism phenomenon accompanied by global changes in neural activity. We previously identified SLEEPLESS (SSS) as a glycosylphosphatidyl inositol-anchored protein required for sleep in Drosophila. Here we found that SSS is critical for regulating the sleep-modulating potassium channel Shaker. SSS and Shaker shared similar expression patterns in the brain and specifically affected each other's expression levels. sleepless (sss) loss-of-function mutants exhibited altered Shaker localization, reduced Shaker current density and slower Shaker current kinetics. Transgenic expression of sss in sss mutants rescued defects in Shaker expression and activity cell-autonomously and suggested that SSS functions in wake-promoting, cholinergic neurons. In heterologous cells, SSS accelerated the kinetics of Shaker currents and was co-immunoprecipitated with Shaker, suggesting that SSS modulates Shaker activity via a direct interaction. SSS is predicted to belong to the Ly-6/neurotoxin superfamily, suggesting a mechanism for regulation of neuronal excitability by endogenous toxin-like molecules.

Keywords

Behavior, Animal, Sensory Receptor Cells, Green Fluorescent Proteins, Neuromuscular Junction, Brain, Membrane Proteins, In Vitro Techniques, Article, Animals, Genetically Modified, Gene Expression Regulation, Larva, Mutation, Shaker Superfamily of Potassium Channels, Animals, Drosophila Proteins, Humans, Immunoprecipitation, Drosophila, Female, Sleep, Cell Line, Transformed

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 1%
Green
hybrid