
Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.
Original Article
Original Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
