
Traditional smearing or blocking techniques serve well to increase the overlap of operators onto physical states but allow for links orientated only along lattice axes. Recent attempts to construct more general propagators have shown promise at resolving the higher spin states but still rely on iterative smearing. We present a new method of superlink construction which creates meared links from (sparse) matrix multiplications, allowing for gluonic propagation in arbitrary directions. As an application and example, we compute the positive-parity, even-spin glueball spectrum up to spin 6 for pure gauge SU(2) at beta = 6, L = 16, in D = 2+1 dimensions.
27 pages, 10 tables, 8 figures, uses RevTex4, minor corrections and further development, reunitarized superlinks, as accepted by PRD
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
