Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of antiviral antihistamines for COVID-19 repurposing

Authors: Reznikov, Leah R.; Norris, Michael H.; Vashisht, Rohit; Bluhm, Andrew P.; Li, Danmeng; Liao, Yan-Shin J.; Brown, Ashley; +2 Authors

Identification of antiviral antihistamines for COVID-19 repurposing

Abstract

There is an urgent need to identify therapies that prevent SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Although repurposed drugs with favorable safety profiles could have significant benefit, widely available prevention or treatment options for COVID-19 have yet to be identified. Efforts to identify approved drugs with in vitro activity against SARS-CoV-2 resulted in identification of antiviral sigma-1 receptor ligands, including antihistamines in the histamine-1 receptor binding class. We identified antihistamine candidates for repurposing by mining electronic health records of usage in population of more than 219,000 subjects tested for SARS-CoV-2. Usage of diphenhydramine, hydroxyzine and azelastine was associated with reduced incidence of SARS-CoV-2 positivity in subjects greater than age 61. We found diphenhydramine, hydroxyzine and azelastine to exhibit direct antiviral activity against SARS-CoV-2 in vitro. Although mechanisms by which specific antihistamines exert antiviral effects is not clear, hydroxyzine, and possibly azelastine, bind Angiotensin Converting Enzyme-2 (ACE2) and the sigma-1 receptor as off-targets. Clinical studies are needed to measure the effectiveness of diphenhydramine, hydroxyzine and azelastine for disease prevention, for early intervention, or as adjuvant therapy for severe COVID-19.

Related Organizations
Keywords

Coronaviruses, sigma, Sigma-1 receptor, Medical Biochemistry and Metabolomics, Ligands, Biochemistry, Docking, Coronaviruses Therapeutics and Interventions, Catalytic Domain, Receptors, Chlorocebus aethiops, Medicinal and biomolecular chemistry, Biological Sciences, Angiotensin converting Enzyme-2, Infectious Diseases, 5.1 Pharmaceuticals, Receptors, Histamine, Angiotensin-Converting Enzyme 2, Repurposing, Histamine, Protein Binding, Biochemistry & Molecular Biology, Biophysics, Histamine Antagonists, 610, Antiviral Agents, Article, Medicinal and Biomolecular Chemistry, Rare Diseases, Sigma-1 Receptor, Clinical Research, Animals, Humans, Receptors, sigma, Molecular Biology, Vero Cells, SARS-CoV-2, Prevention, Drug Repositioning, Cell Biology, COVID-19 Drug Treatment, Orphan Drug, Emerging Infectious Diseases, Good Health and Well Being, HEK293 Cells, Biochemistry and cell biology, Chemical Sciences, Biochemistry and Cell Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 1%
Top 10%
Top 1%
Green
hybrid