Downloads provided by UsageCounts
handle: 10773/27896
The activation energy of oxygen diffusion in strontium ferromolybdate Sr2FeMoO6–δ is determined by the Merzhanov technique based on the temperature dependences of the oxygen desorption dynamics. The activation energy has a minimum value of 76.7 kJ mol−1 at δ = 0.005 and a maximum value of 156.3 kJ mol−1 at δ = 0.06. It is suggested that with an increase in the concentration of oxygen vacancies, an interaction occurs between them and the nearest cations, with the subsequent formation of associates of various types that are less mobile than the single anion vacancies. According to Mössbauer spectroscopy data, it has been established that the appearance of oxygen vacancies and their ordering contribute to the isomer shift, and some of the iron ions occupy the tetrahedral (or close to it) positions in the lattice. This indicates the formation of associates of oxygen vacancies. The results of X‐ray photoelectron spectroscopy (XPS) studies show that the increase in the concentration of oxygen vacancies results in a decrease of the Mo6+ and Fe2+ concentrations. At the same time, the number of Mo5+ and Fe3+ cations increases due to the redistribution of the electron density, and molybdenum cations in a different valence state (Mo4+) appear.
strontium ferromolybdate, defect formation, Oxygen stoichiometry, Condensed Matter Physics, Electronic, Optical and Magnetic Materials, Strontium ferromolybdate, Defect formation, oxygen stoichiometry, Oxygen desorption, oxygen desorption
strontium ferromolybdate, defect formation, Oxygen stoichiometry, Condensed Matter Physics, Electronic, Optical and Magnetic Materials, Strontium ferromolybdate, Defect formation, oxygen stoichiometry, Oxygen desorption, oxygen desorption
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts